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The transmissioliT) and reflectionR) coefficients are studied in periodic systems and random systems with
gain. For both the periodic electronic tight-binding model and the periodic classical many-layered model, we
obtain numerically and theoretically the dependencd& and R. The critical length of periodic systerlng,
above whichT decreases with the size of the systemhile R approaches a constant value, is obtained to be
inversely proportional to the imaginary part of the dielectric functiore. For the random systenT, andR
also show a nonmonotonic behavior versugor short systems (<L) with gain{InT)= (Igl— & YL. For
large systemsl(>L.) with gain{In T):—(I§1+§51)L. Lc.lg, and &, are the critical, gain, and localization
lengths, respectively. The dependence of the critical lebgthn ¢” and disorder strengtW are also given.
Finally, the probability distribution of the reflectidR for random systems with gain is also examined. Some
very interesting behaviors are observg80163-1829)02809-X]

[. INTRODUCTION properties, such as critical length and exponential decay of
transmission, of homogeneously random sy&téom a pe-

While the study of localization of classical and quantumriodic system too.
waves in random disordered media has been well With the help of some theoretical arguments and numeri-
understood; ™ recently, the wave propagation in amplifying cal results, we suggest that the length=|1/Im(K)|, where
random media has been pursued intensively Some inter- K is the Bloch vector in a periodic system with gain, to
esting results have been predicted, such as, the localizatidplace the gain length,=|1/Im(k)| introduced in Ref. 8.
length of a random medium with gaffrthe sharpness of back This is more reasonable since the correlated scatterers in a
scattering coherent pedR%*the dual symmetry of absorp- periodic system can make the paths of wave propagation
tion and amplificatior?, the critical size of the systefif and ~ much longer in the system. We also think that it is actually
the probability distribution of reflectiohNumerically, two ~ the Bloch wave instead of the plane wave which propagates
kinds of models are studied: one is the electronic tight bindin the system. Then we introduce disorder into these periodic
ing model*>**the other is the many-layered model of clas- Systems and calculate their properties. Our numerical simu-
sical wave$ Theoretically, a lot of methods are used to getlations for both models show that periodically correlated ran-
these results, such as the diffusion thédfyand the trans- dom systems give similar behaviors as that of the homoge-
mission matrix method Most of these studies are for homo- neously random systems studied previously. But in some
geneously random systems which are generated by introdu€ases, we get interesting results for the localization leggth
ing the disorder into the continuous system, and the mediurihe critical lengthL . and the probability distributioR®(R) of
parameter, such as the dielectric constant, is assumed to vaigflection. All these results are related to the periodic back-
in a continuous way? But the periodically correlated ran- ground of such systems. We also examine the results of the
dom systems which are generated by introducing the disoitransmission coefficienT for short (L<L.) systems. Our
der into a periodic system, such as a photonic-band-structureumerical results show that the formula of the transmission
have not been studied adequately. coefficient of media withabsorptioncan be generalized to

With gain, will such random systems with periodic back- the transmission coefficient of short systems vgitin, if we
ground behave similar as the homogeneously random syseplace the gain length, (or ;) with the negative of the
tem? Both experimentally and theoretically, the study ofabsorption length-1, in the formula. To explain our results
such system is very important in understanding the propagaf the critical lengthL ., we compare the two basic theories
tion of light in random media. These type of photonic-band-for obtaining the critical length, the Letokhov thebgnd the
structure systems are widely used in experiméhtsTheo-  Lamb theory® and we get some theoretical results of critical
retically, just as Johnargued, the localization of a photon is length which are in good agreement with our numerical re-
from a subtle interplay between order and disorder. For theults. The behavior of the distribution of the probability of
periodically correlated random systems with gain, the periveflectionP(R) is much more complex than the theoretical
odic background plays the order role, and now its interplayprediction of homogeneously random systeiwe find that
with not only disorder but also with gain should be a verythe periodic background influences strongly the general be-
interesting new topic. havior of P(R).

In this paper we address both the electronic tight binding The paper is organized as follows. In Sec. Il we introduce
model and the many-layered model of classical waves. Wéhe two theoretical models we are studying. The results for
first compare the numerical results of periodic amplifyingthe periodic systems with gain are presented in Sec. Il
system with what we can predict theoretically by the transfewhile in Sec. IV the results for the random systems with gain
matrix method. It is surprising to get most of the universalare given. Also in Sec. IV we present our theoretical and
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numerical results for the critical length;. In Sec. V the  +Wsy), whereW describes the strength of randomness @nd
results for the probability distribution of reflection coefficient s 3 random number between (0.5,0.5). The whole system
Rfor both models are presented. Finally, Sec. VI is devoteds empedded in a homogeneous infinite material with dielec-
to a discussion of our results and give some conclusions. tic constant equal te,.

For the 1D case, the time-independent Maxwell equation

Il. THEORETICAL MODELS can be written as
A. Many-layered model of classical wave
o . PE(z) w?
Our periodic many-layered model of classical wave con- — t=&(2)E(2)=0. 1)
sists of two types of layers with dielectric constant= ¢ Iz ¢

—ie"” and e;=yxeo—ie” and thicknessea=95 nm and ) . o )

bo=120 nm, respectively, where the negative part of dielec- Suppose that in the medium with dielectric constapt
tric constant, i.e.¢”>0, denotes the homogeneous amplifi-and the medium with dielectric constan, the electric
cation of the field. We have tried a lot values fpr such as  field” is given by the following expressions:

1.5, 2, 3, 5, 6, and get no essential difference in our results

for different values. In this paper we chooge=2, i.e., Ein(2)=Ane * 2) + B e k),
Re(e1)=¢ep=1 and Reg,)=2¢,=2. The system had , A
cells. Each cell is composed by two layers with dielectric Eon(2)=C,e*# % + D e k@2, )

constank; ande, respectively. Without gain, we obtain that

the wavelength range of the second band of this periodic Using the appropriate boundary conditiccontinuity of
system is from 247 nm to 482.6 nfthe first band has a the electric fieldE and of the derivative oF at the interfacg
range from 592 nm to infinile So we choose the wavelength We obtain that

360 nm to represent band center, the wavelength 420 nm as

a general case, and the wavelength 470 nm to represent the An-1 _ An
band edge. B,_; =(My) B,/ (3)
To introduce disorder, we choose the width of second
layer of the nth cell to be random variabld,=by(1  where
|
, ik i . [k
e ke codqby) -5 a+% Sin(qbn)} —Ee""a a—g sin(qby)
Eelka(a_E)Sin(qb”) elka cogqby) + 5 at E)sin(qbn)}
|
wherek= (w/c) e, andq=(w/c) /e,. E-¢, -1
From the product of these matriced,(L)=I1\M,, we Ma)= 0 (6)

can obtain the transmission and reflection amplitudes of the

samplet(L)=1/M,; andr(L)=M,,;/M4,. For each set of e,=Wy—in, whereW describes the strength of random-
parametersl(,W,e"), the reflection coefficienR=|r|> and  ness,y is a random number between-(.5,0.5) >0 cor-

the transmission coefficiefit=|t|2 are obtained from a large responds to amplification angl, is the wave function at site
number of random configurations. We have used 10 000 cori. The lengthL of the system is the total lattice number of
figurations to calculate the different average valueRahd the system. The system is embedded in two identical semi-
T, and 1 000 000 configurations to obt&R). Our numeri-  infinite perfect leads on either side. For the left and the right
cal results show that the localization length for a systensides, we havepo=1+r(L) and ¢, ,,=t(L)e*""D. we
without gain behavesg,=1/MW? for this model, and are in can obtain reflection amplitudéL) and transmission ampli-
agreement with previous workers. tudet(L) by the products of matrices/ (L) =II;M,,.

—2i sin(k)

B. Electronic tight-binding model t(L)= : .
M1e "+ M= Mo~ My

e ik(L+1)

For the electronic tight-binding model, the wave equation
can be written as . .
(L) M1 + M= My~ M e
r(L)= . .
Pn+1 &n M e ™+ M= My~ M e
=(Mp) : 5
®n Pn-1 wherek=arccosg/2).

WhenW=0 and without gain, the model is a periodic one

where with only one band spanning in energy betweef and 2.

e—ik7 (7)
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Notice that the hopping matrix elements in Ef) are equal
to one, which is our unit of energy. So we chodse 0 to
represent band centeE=1 as a general cas&=1.8 to
represent band edge.

Similar as the many-layered model, for each set of param
eters (,W, ), 10000 random configurations were used to
obtain a average value &t and T, and one million random —

@

configurations forP(R). Theoretical and numerical results =
give that the localization length for a system without gain— 2 (b) '
behavest,« 1/W?, in agreement with previous workers. °
10 500880
o0 (;DDD&S@W%EZ%%DDD o,
Ill. PERIODIC SYSTEMS o c;;’%%%}nng%ng v VvWV%iAi&%&ggf oo,
. . . Vod 250505~ O
Almost all the properties of the periodic systems of both vaéV%vAvofouoﬂou Cog
. L Wigs £ 8888 o4
the many-layered model and the tight-binding model can b 10 . A S82a
i i -10 0 10 20
predicted theoretically. (L-L?: ) /&]
A. Classical many-layered model FIG. 1. The logarithm of the transmission coefficidhtersus

e (L- L9)/¢,, whereL? is the critical length and; is the gain length
of periodic systems(a) For the periodic many-layered modéi),
(i), and (i) are the values at three representable wavelengths:
=360 nm (band center 420 nm (general, and 470 nm(band
dinT N . . .
lim =—¢ 1=2 Im(K)xe”, (8) edge, r_espectlvel_y. The different symbols represent values obtained
Lo JL from different gainsg”=—0.001, —0.002, —0.005, —0.001, and
—0.1. (b) For the periodic tight-binding model wite=0 for dif-
whereK is the Bloch vector which is a complex number ferent gainsy=0.01, 0.05, 0.1, 0.2, and 0.5.

now, and satisfies cd6=coska)cos(by)— 3(k/q

For long systemsL(> Lg) of the many-layered model wi
have that

+a/k)sin(ka)sin(gbo). Because ImK)<O0, the transmis- The reflection coefficient gets to a maximum valug 3t
sion coefficientT is decaying exponentially for a long sys- too, and fluctuates a lot with the sikeof the system. When
tem. o L approaches infinityR reaches a saturated value. The satu-
For a short systent, <L, we have rated value oR is given by
alnT _ ; 2
— = Y&=2|C[Im(K)[=2[Im(K)], €) lim R= RO:Kk/q a/k)sin(qb)| _ (11)
; 2
L |sin(K)(|C[—1)]

where C=—[sin(ka)cos(gbg) + coska)sin(qbg) 1/

[2sin(K)], and|C| is larger than but very close to 1 when SO Ro is almost independent of gain g . Figure 2 shows
wavelength is at the band center, and become bigger whelfat indeedR increase wherL <L., gets to its maximum
wavelength approached the band edge.

So the slope of Iff vs L for a short periodic system is B e a2 "1060 2130
almost same as the negative value of the slope for the lon b u
system. The slopes of That both sides of the maximum are

approximately symmetric. In Fig.(d), we can see that, when

L<L?, T increases v4 with the slope 14;, and get to a g 1000 2000 3000
maximum atL? and decays exponentially whern>L2 with 15122 T 1248
the slope 14, . e aboe obbia
From the behavior of the theoretical expressiond ar £ {b)
R, whenT or R goes to infinite, we can obtain analytically 20 ‘ ‘
thatL? is given as 20" 100 2000 2000

49
10 (g 85 206 412
ﬁ VITTTRTITIYY || TTITY
0
L (10) _10 L

-20

|IC|+1

LSZ §1In |C|——1

©
500 L 1000 1500

whereC is same as defined above in Ef), and|C]| is close
to one. From the property ¢€| discussed above, we can see

0
that L|°>§1hat the barr:d Cehmet; ’ andbeco_g]es ST?éllerf Whert\"ne periodic many-layered modefa), (b), and (c) are values of
wavelength approaches the band edge. The vall€pfs three representative wavelengitts 360 nm, 420 nm, and 470 nm,

almost independent of gain, 4 is parallel to 1¢” or &;. respectively. From right to left, the numbers on the peaks are the
We have shown thatJe” is almost a constant for a given yaues of L2, corresponding to different gains”=—0.001,
wavelength, and our numerical results agree very well with-0.002,-0.005,—0.01, and—0.1. Notice that the saturated value
the theoretical prediction. of Ris independent o¢” for the three wavelengths studied.

FIG. 2. The logarithm of the reflection coefficidRiversus L for
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20 75 T InT
073 7 N]ﬁ Iim-——=—-1/=—179 (12
. L Ol
-10 @
20 ‘ ‘ ‘ Similarly as the classical many-layered model, for short
20° 199 20 0 40 system of tight-binding model we have
13 64
— 107 25 145
T . W
£ . ) aInT V! 13
. ! = l: 7.
'zzo 100 200 300 oL
7 51
w0f e = So the slope symmetry of hat both sides of_g still exists.
0 © In Fig. 1(b), we can see a similar behavior as in Figa)l
B ‘ ‘ whenL<L?,InT change v4 with the slope of 14; and gets
0 50 100 150

FIG. 3. The logarithm of the reflection coefficigRiversusL for
the periodic tight-binding mode(g), (b), and(c) are values of three
representative energieE=0, 1, and 1.8. From right to left, the
numbers on the peaks are the value$.2)torresponding to differ-

ent gainsy=0.01, 0.05, 0.1, 0.2, and 0.5. Notice that the saturated

value ofR for eachE depends ony;.

value and fluctuate violently axg, then approaches a satu-
rated value which is almost independent of gain.

B. Electronic tight-binding model
For the electronic tight-binding model, whéf=0, the

maximum atl_g, then it begin to decay exponentially with a
slope of 1£;.

Assuming that the theoretical expressionTofgiven by
Eq. (7), is infinite, we can obtain thalg is given by

2
LS:;(In 4—In 5)=2&,In(4&,). (14)

We also shown that27»+2In7 vs », for E=0, is a con-
stant for different gain and indeed find out that the theoreti-
cal prediction given by Eq(14) agree very well with the
numerical results.

The reflection coefficienR approaches a saturated value

InT for the long system can be obtained by the use of EgasL goes to infinite, but the saturated valueRy is not a

(7):

10

<In(T)>

-10

LG

FIG. 4. The average values of the logarithmToVersusL/&.
The results of the random many-layered model, with360 nm
andW=0.2, are shown by solid lines. Lines from lower to higher
correspond to different gains’=0.0005, 0.001, 0.005, and 0.01.
When &” is equal to 0.001, %, is almost the same asé}/, so
(InT) is almost horizontal for small, as shown by the wide solid
line. For ¢”">0.001, 1£,>1/¢,, and for ¢”<0.001, 1£,<1/¢,.
Results for the random tight-binding model, wih=0 andW=1,

constant independent of the gain as in the case of classical
many-layered model. This is clearly seen in Fig. 3 where we
plot InR vs L. Notice that the IR curves increase Ms when
L<L?, get to a maximum &t?, and then approach a satu-
rated value wherL goes to infinity. Similar results were
obtained forE+0.

IV. RANDOM SYSTEMS

In Fig. 4, we give the general behavior of average value
(InT) vs L for both models. We can see the different behav-
iors for L<L., and L>L.. When 1£,>1/{, and L
<L, (InT) increase v4. from origin with a slope which is
defined as %' and whenL>L_, (InT) decrease vk with a
slope —1/¢. But when 1£,<1/&,(InT) will decrease
monotonically, at first with the slope &/=—1/¢’|, atL.,
there are a turning point and slope changes fid¢. We will
study the values of’, &£ andL. in this section.

It was first suggested by Zhahghat the localization
length ¢ of a long random system with gain will become
smaller than the localization leng#y of the random system
without gain. In particular he suggested that

1

&InT_ 1 N
aL & &

1 15
g_' (15

L—oo

are shown by dashed lines. Lines from lower to higher correspond

to »=0.01, 0.02, 0.08, and 0.3. Whepis equal to 0.02, ¥, is
almost the same as&y, so(InT) is almost horizontal for small,
as shown by the wide dashed line. Bpr0.02, 1£,>1/¢,, and for
7<0.02, 1£,<1/&,.

where &, is the localization length of the system without
gain, I, is replaced by, in the original formula of Zhang
because of the periodic background of our systems.
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050 ' ' ' models. When the strength of the disorder is a constant , so
0.40 Y &, is a constant, according to EQ.7), 1/¢,— 1/¢' should be
v equal to 1£, and be constant as the gain varies. We have
0.30 | . 1 checked this prediction and find indeed that the numerical
020 | ] | values are almost the same as the ones predicted theoreti-
< cally.
0.10 (@) | From Eq.(17), we can predict the basic features of the
w000 ‘ ; ; . length dependence @finT) shown in Fig. 4. When E;
— 1_(?'00 0‘70 °',2° °',3° °'f‘° 050 >1/¢y,{InT) will increase withL, and will reach a maxi-
g mum value wherL gets toL.. But if 1/&,<1/&g, the(InT)
08 N | will decrease monotonically, at first with a slope ef 1/¢;
06| s ! ] —1/&,| from the origin, atL. the curve has a turning point
7" and the slope changes te|1/&,+ 1/&y|. If 1/&,=1/&,, the
0.4 E . . .
¢ curve is almost horizontal for small L and begins to decrease
02t 1 with a slope—1/¢ at the critical length. This behavior is
00 ‘ , , , () exactly shown in Fig. 4.
0.0 02 0.4 06 0.8 1.0 The critical lengthL . is one of the most important param-
1/§0+1 /&1 eters of a random system with gain. For a random system,

one of the most important theories is the Letokhov théory.

FIG. 5. 1€ versus 1£,+ 1/¢;, whereé is the localization length Zhand generalized the theory and used the no-gain localiza-
for a system with gaing, is the localization length of a system with tion length &, to replace the diffusion coefficied in the
disorder but with zero gain, ang} is the gain length(a) For the  Letokhov theory and obtain that the critical length
random many-layered model, empty symbols are of wavelength = /£l , so that we can clearly see localization effects in the
=360 nm and filled symbols are of wavelength=470 nm. Dif-  system. But as shown above, there is a finite critical length in
ferent symbols represent different sets of parameters of disorder a’}%riodic system when the no-gain localization lenégglyoes
gain:W=0.05,0.1,0.2, and 0.5;=0.001, 0.002, 0.005, 0.01, 0.05, g infinjte, so there must be other mechanisms for determin-
and 0.1(b) For the random tight-binding model, empty symbols ar€jng the critical length in those systems. We find that when

of energyE=0, and filled symbols are of energy=1.8. Different  yhq |ocalization effect is strong enough so that the no-gain
symbols represent different sets of parameters of disorder and ga'ﬂﬁcalization length & <(L0)2/§ then the results of the
W=0.5, 0.8, 1, 1.5, 2, 3, and 5=0.01, 0.05, 0.1, and 0.3. 0=Ar-c/ Pel)
and 5 an Letokhov theory are quite good. But when the system ran-
domness is weak so thg is larger than [2)%/¢;, then the

We have numerically calculatedélfor different cases of ~Letokhov theory results are not correct, and we have to use
disorder, gain and frequen@nergy, and compare it with Other theories, such as the Lamb thetrywhich is well
1/&,+1/¢;, as shown in Figs. ®) and 3b) for the many- known is laser physics, to d_etermlh@. Next we will com-
layers model and the tight-binding model respectively. FoPare the Letokhov theory with the Lamb theory, and find the
most of the cases, Eq15) is a very good formula. Only €XPressions of the critical length in qlffere_nt cases.
when wavelength is on band edged when both gain and According to the Letokhov theoty! the field in the sys-
randomness are very strong, we can see that the numerid@m satisfies
results deviate from the theoretical prediction, which is the -
solid line in both Figs. &) and gb). dg(r,1)

For a short systeml(<L_), the behavior ofInT) vsL is at
quite different from that of a long system as shown in Fig. 4.
Freilikher et al. and Rammal and DoucBtobtained that the

co(r,t)

ly

=DV2e(r,t)+

(18

whereD is the diffusion coefficient and is the speed of the

transmission coefficient of a random system vétisorption wave.
i qiven b y P Considering the relaxation after long time, the solution
9 y of Eqg. (18) is
1 1 - 2
<|nT>: - ———L, (16) ¢(r’t)oce7t[D(1T/L) 7C/|g],

la &
wherel, is the absorption length ang}, is the localization (9¢(F,t) a\2 c¢(F,t)
length. For a medium witlyain, can we just substitute the o Dl o+ i, (19

—1,* with I in Eq. (16) to get the following equation?
WhenL=L.=mDlg/c, the system is at a critical point. If
(nT) 1 (1 1 L<L. the field will decay vs time, but i > L then the field
L —g— (E_ f_o) 17 in the system will become stronger and stronger with time.
We can clearly see that the physical meaning. ofs the
Because of the periodic background of our models, we usbalance point of the gain and loss in the system. Wherithe
&, to replacel 4 in our calculations. is less thanL., the photon escaping rate, which is deter-
So far there is no independent verification for this conclu-mined byD 7%/L?, is larger than the photon generating rate,
sion. After substituting; for | 5, our numerical results show which is determined by/l, of the system, so the photons
that Eq.(17) is correct forshort systems withgain for both  generated by the stimulated emission can escape from the




6164 XUNYA JIANG AND C. M. SOUKOULIS PRB 59

system instantaneously and the system can get to the stasapport this assumptignLamb theory gives that the Q of a
state after a long time. If is larger tharL., gain is larger strong random system is determined by the localization ef-
than loss, and photons will be accumulated in the system. fect. By comparing the corresponding terms in Etp) and
Based on the Letokhov theory and the weak localizatiorEq. (20), we obtain that

theory"? results, ZhanQ generalized theL. to be L.

=&l 4 sinceD=3lc, wherel is the mean free path and Q=0,— wl? _ awl? 23
£o=(2~4)1. " #D  cé

In our models, considering the periodic background, we o _ _
substitute&; for I, first. But when the disorder becomes Where the subscridtis for localized modesy is a constant
weaker and weaker, the system become almost perigglic, of the order of unity and depends on the ratiolbfand &,
goes to infinite,L; goes toL? instead to infinite. How one according to the localization theory. For both of the models
can explain this behavior df,? The Lamb theory can give a Studied here, we find the can be chosen to be equal to 0.7.
theoretical explanation of it. In the Lamb theory, a phenom-From this we can get that the critical length= y1/aoé;
enological parameter @), the quality factor which gener- =\¢pé1 Which is consistent with the Letokhov theory. Equa-
ally is a function of system length, is introduced to show tion (23) is a very interesting result for laser physics because
the energy loss rate of the systéaiso can be thought as the it is obtained by the comparison of the Letokhov and Lamb
photons loss rate of the systgnin the Lamb theory, the theories, and it directly gives the relationship of the quality
magnitude of the electric field in a linear medium satisfiesfactor Q of a random system with the no-gain localization

the following equation: length &, of the system. ,
JIE) . In the weak disorder limit,>L2"/&;,Q—Q, and L,
Faa ZQQ()L) B[+ [E®)]. 200 —L% In strong disorder limitgo<L%/¢,, Q—Q, and L,
g —&pé,. For cases wherg, is comparable t(h.gz/gl, both
At the critical condition, the gain term and loss term arethe effects of periodic background and randomness will be
equal. We have important to determine the quality factor of such a system.
Considering theQ as the photon-resistance in the system,
o ¢ 21) and if we assume that both effects amdependentvith each
2Q(Ly) g other, we have that the total quality factor of the system to be
If we compare Eq.20) with the solution of Letokhov ol &L al?
theory, Eq.(19), we can find the similarity between them. Q=Qp+ Q=7 0 (24)
This similarity is from the same physical principle, the inter- ¢ 0
play of loss and gain in the system. From E2z{) we can see From the critical condition, Eq21), we have that
that the gain term is same as the one given by the Letokhov
theory, the only difference is from loss term. Geperally, £ Eobs 2 Eobs
/2Q is a function of the system length, e.g., for FabryeRe L.=— 5t ( 0) +— (25
interferometer w/2Qoc1/L.1%*® For periodic systemQ 2al ¢ 2al ¢ @

=Q,, we havew/2Q,*1/L too. From the balance of gain

0 . .
and loss, we can gdt x¢; in agreement with our results rHons given by Eq(25) and by ZhanBwith our numerically

presented in Sec. lll. This means that in a periodic syste .
the rate of loss is not infinite, although the no-gain localiza-C2/culated results for the classical many-layered model and

: e ; ; the electronic tight-binding model, respectively. Our numeri-
tion length goes to infinity. The rate is determined by @ g
of the system and we can get a finitd correspondingly. cal results shown in Figs.(8 and @b) strongly support Eq.

: ° " . 2 h rr xpression of the critical lengthfor
From theL? obtained above and the critical condition g|ven( ) to be the correct expression of the critical lengihfo

b 5 h hat th lity f £ th odi both the weak and the strong random limits. In some other
y Eq. (_ 1)’_We ave that the quality factor of the periodic cases, the deviation can be as large as fifteen percent which
system is given by

is still very good considering the many approximations that
have been introduced in derivation of E§5). One expla-
szw_‘flL, (22)  nation for this deviation is that the two effects that were
ZcL(C’ added in Eq.(24) are not totallyindependentpecause the
correlated scattering of the periodic background will affect
bothQ, andQ, .

In Figs. §a) and Gb), we compare the theoretical predic-

which is independent of no-gain localization length

For a random system, things are a little more difficult. The
theory of Letokhov does not give the detailed information of
localized modes but it gives a localization related quariity V. PROBABILITY DISTRIBUTION OF REFLECTION
the diffusion coefficient. According to the localization COEFFICIENT
theory,D is directly related with localization lengty, just Pradhan and KumAfirst obtained the probability distri-
as Zhang discussédBased on the correct results of the pution of the reflection coefficient for a long system with
Letokhov theory in the strong localization case, we can asrandomness and gain, which is given by
sume that when the disorder is strong enogdgke nglgl, )
the localization effects will dominate the escape rate of pho- P(x)= P( R- 1) :( 24 ) p( —ZQ)’ 26)

tons of the systentOur numerical results shown in Fig. 6 2q R-1 R—-1
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FIG. 6. The critical length. is plotted versus different random
strengthsW. (a) For the random many-layered model with
=360 nm, the dashed line and darkened line are the values ob
tained according to Zhang's formula and E&5), respectively(b)

For the random tight-binding model witB=0 and »=0.01, the

dashed line and darkened line are the values obtained according to . o . o

Zhang's formula and Eq(25), respectively. In both cases FIG. 7. Probability distribution of the reflection coefficigPx)

=6, /2aL% anda=0.7 versus x of the random many-layered system with gain »at
c 7.

=300 nmforg=1.1and 17.7a); q=0.163(b); q=451(c), where

wherex=(R—1)/2q andq=&,/&;. We numerically calcu- x=(R—1)/qandgq=¢,/4;. The solid curve given by the solid line
lated theP(x) (or P(R)) for both models in cases that in (a), (b), and(c) is the analytical result of Eq26). In (d), P(R)
changes drastically. Our numerical featuresPgk)(P(R))  VersusR is plotted for two values ofj: g=1800 (low on¢ and
give some interesting results. According to H@6), the 7_200.(high ong. Notice thatP(R) approaches a delta-function dis-
maximum probability ofP(x) (or P(R)) should appear at {ribution atRo wheng=7200.
0.5(orR=q+1), and the distribution has a long tail of large
x (or R). and disappears, and the new peak become highBg .ait

For the many-layered model, when the wavelength is neaghe same time the long tail disappears, B{&) also changes
the band center\=360 nm), we have thatY/¢;=7 for o a delta function at the position &,. All these changes
different gains from Eq(10). Whenq at the range of 0.01 0 are shown clearly in Fig. 8. In Ref. 13, they also got two
50, and sc< Lg /&4, theP(X)[P(R)] behaves as predicted peaks forlP(R), but they did not explain that the new peak is
by Eq.(26). Whenq is at the range of 50 to 500, the position due to the periodic background of the system and that the
of the maximumP(x)(P(R)) begins to shift left away from delta function is at the position &, the saturated value of
the point 0.5(or g+ 1). Whenq increase further, such as to periodic system. When g is very small, we obtain that the
become close to a thousand, the maximunP@R) shift to  P(x) (or P(R)) is almost the same as the one predicted by
the value ofRy, which is the saturated value of reflection for gq. (26), quite different from the results of Ref. 13. We think

the periodic system, arfél(R) begin to change its shape into that this difference is due to the fact that they have not renor-
a delta function and the long tail disappears. This process igalized their numerical results.

clearly shown in Fig. 7. Itis reasonable to assume that when | symmary, from our numerical results, we get the gen-
qis very large, the system is similar to a periodic system, s 5| pbehavior ofP(x) (or P(R)) for both models. Wherg,

the P(R) changes to a delta function which is the distribu- 02/ h : he th icall
tion of the reflection coefficient of the periodic system. ~ <Lc /é1, the P(x) (or P(R)) is same as the theoretically

For the tight-binding model, when frequency is at bandpredicted one by Eq26). When ¢, is bigger thannglgl,
center E=0),LY¢, is not a constant ag changes. It has a we must think about the effect of the periodic background
range from 5 to 7. Whem is at the range of 0.01 to 20 and if &, is really very large, the periodic background will

(&< ng/&), the P(x) (or P(R)) behaves as predicted by dominate the behavior &(R). We also find that at the band
Eq.(26). Whenq is at the range of 20—400, then the position edge wavelength for many-layered modg&l<470 nm) or

of the maximumP(x) (P(R)) begins to shift left away from at the band edge energy for the tight-binding madéet1.8)
theoretical value 0.%or q+1). Whengq is larger than 400, the effects of coherent scattering will be very strong and
P(R) develops two peaks, one peak evolves from the origisnake the long paths of wave propagation more important. So
nal peak, the other one emergesRy. When q is even we think it is this coherent scattering effect which makes the
larger, such as thousands, then the original peak goes dowasults ofP(x) (or P(R)) always different from the predic-

05 |

0 " .
0 1000 2000 3000 4000 5000

0.0 U
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0.8 ' . 0.8 ' ' random systems with homogeneous gain. Theoretically, for
periodic systems we predicted the behaviors of transmission
and reflection coefficients, such as the slopes of long systems
06 (@ | 081 (b) and of short systems and critical length by the transmission
: matrix method. For random systems, first the Zhang's for-
mula of the localization length for long systems is checked.
We find that only at the band edge and with very strong gain
and strong disorder, there is obvious deviation from the the-
02| 1 02t 1 oretical prediction of the localization length with gain. For
e short systems, our numerical results show that our generali-

04 1 oap| 1

: zation of the formula of absorbing system is correct for am-

0.0 , . . 0.0 p > 3 7 plifying systems. According to this generalization we can
predict the behaviors of average values of logarithm of trans-
mission coefficien{In T) from the value of 1¢’, such as if it

1.0 . . 0.20 . is positive then théIn T) will increase from origin at slope

1/¢’ and generate a peak lat and then start to decrease at

. slope — 1/¢; if it is negative then thgInT) will decrease

0.8

©) 015 1 (d) - monotonically and has a turning point la with the slope
0.6 | change from—1//¢'| to — 1/&.
010 L i To explain the behavior of the critical length which we

got from our numerical results, we compare the Letokhov

i theory with the Lamb theory and give a general expression
oz b | 005 ¢ 8 for the critical length considering both the effects of local-
) h ization and periodic background. With this comparison, we
" %L also construct the relation of the quality fac@of a random
00 2 5 4 “®so0 w0 100 teso  System with the localization length .
FIG. 8. Probability distribution of the reflection coefficiePtx) We also study the probability distribution of the reflection

versusx of the random tight-binding system with gaint0 for ~ coefficientP(R) of random systems with gain. We find some
g=1.0 (a); q=132 (b); q=525 (c), where x=(R—1)/q and q new behaviors oP(R) and give the criteria for the range of
=¢£,/&,. The solid curve given by the solid line f@), (b), and(c) ~ Vvalidity of the different behaviors and explain it by the in-
is the analytical result of Eq26). In (d), P(R) versusR is plotted  fluence of the periodic background too. The study of wave
for g=5.25< 10*.P(R) approaches a delta-function distribution at propagation in an amplifying random system is a challenging
Ry Wheng=5.25x 10%. topic. There are still a lot of things to be dotfe.
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